为了让学生掌握学习方法,教师在教案中应融入学法指导的相关内容,,通过对教案的反思,教师能够发现自身的不足,进而进行改进,下面是文笔巴巴小编为您分享的3.2实数教案6篇,感谢您的参阅。
3.2实数教案篇1
教学目标(知识、能力、)
1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.会用电子计算器进行四则运算。
教学重点 实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。
教学过程
一:【前预习】
(一):【知识梳理】
1. 有理数加、减、乘、除、幂及其混合运算的运算法则
(1)有理数加法法则:
①同号两数相加,取________的符号,并把__________
②绝对值不相等的异号两数相加,取________________的符号,并用
____________________。互为相反数的两个数相加得____。
③一个数同0相加,__________________。
(2)有理数减法法则:减去一个数,等于加上____________。
(3)有理数法则:
①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,
都得________。
②几个不等于0的数相乘,积的符号由____________决定。当______________,
积为负,当_____________,积为正。
③几个数相乘,有一个因数为0,积就为__________.
(4)有理数除法法则:
①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。 0除以任何一个
____________________的数,都得0
(5)幂的运算法则:正数的任何次幂都是___________; 负数的__________是负数,
负数的__________是正数
(6)有理数混合运算法则:
先算________ ,再算__________,最后算___________。
如果有括号,就_______________________________。
2.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 .有括号时,先算 里面,再算括号外。同级运算从左到右,按顺序进行。
3.运算律
(1)加法交换律:_____________。 (2)加法结合律:____________。
(3)交换律:_____________。 (4)乘法结合律:_ ___________。
(5)乘法分配律:_________________________。
4.实数的大小比较
(1)差值比较法:
>0 > , =0 , <0 <
(2) 商值比较法:
若 为两正数,则 > > ; < <
(3)绝对值比较法:
若 为两负数,则 > < < >
(4)两数平方法:如
5.三个重要的非负数:
(二):【前练习】
1. 下列说法中,正确的是( )
a.m与—m互为相反数 b. 互为倒数
c.1998.8用科学计数法表示为1.9988×102
d.0.4949用四舍五入法保留两个有效数字的近似值为0.50
2. 在函数 中,自变量x的取值范围是( )
a.x>1 b.x<1 c.x≤1 d.x≥1
3. 按?顺序-12÷4=,结果是 。
4. 的平方根是______
5.计算
(1) 32÷( -3)2+- ×(- 6)+ ;(2)
二:【经典考题剖析】
1.已知x、y是实数,
2.请在下列6个实数中,计算有理数的和与无理数的积的差:
3.比较大小:
4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是 ;320的个位数字是 ;
5.计算:
(1) ;(2)
三:【后训练】
1.某公司员工分别住在a、b、c三个住宅区,a区有30人,b区有15人,c区有10人,
三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小,
那么停靠站的位置应设在( )
a.a区; b.b区; c.c区; d.a、b两区之间
2.根据国家税务总局发布的信息,20xx年全国税收收入完成25718亿元,比上年增长
25.7%,占20xx年国内生产总值(gdp)的19%。根据以上信息,下列说法:①20xx年全国税收收入约为25718×(1-25.7%)亿元;②20xx年全国税收收入约为 亿元;③若按相同的增长率计算,预计20xx年全国税收收入约为25718×(1+25.7%)亿元;④20xx年国内生产总值(gdp)约为 亿元。其中正确的有( )
a.①④;b.①③④;c.②③;d.②③④
3.当 < < 时, 的大小顺序是( )
a. < < ;b. < < ;c. < < ;d. < <
4.设是大于1的实数,若 在数轴上对应的点分别记作a、b、c,则a、b、c三点在数轴上自左至右的顺序是( )
a.c 、b 、a;b.b 、c 、a ;c.a、b、 c ;d.c、 a、 b
5.现规定一种新的运算“※”:a※b=ab,如3※2=32=9, 则 ※ ( )
a. ;b.8;c. ;d.
6.火车票上的车次号有两种 意义。一是数字越小表示车速越快:1~98次为特快列车;101~198次为直快列 车;301~398次为普快列车;401~498次为普客列车。二是单、双数表示不同的行驶方向,比如单数表示从北京开出,则双数表示开往北京。根据以上规定,杭州开往北京的某一趟直快列车的车次号可能是( )
a.20;b.119;c.120;d.319
7.计算:
(1)( - )2; ⑵( + )( - );⑶
(4) ;(5)
8. 已知: ,求
9. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出
10.小王上周五买进某公司股票1000股,每股25元,在接下的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:(单位:元)
星期一二三四五
每股涨跌+2-0.5+1.5-1.8+0.8
根据表格回答问题
(1)星期二收盘时,该股票每股多少元?
(2)本周内该股票收盘时的最高价、最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。若小王在本周五以收盘价将传全部股票卖出,他的 收益 情况如何?
四:【后小结】
3.2实数教案篇2
教学目标
1.知道有效数字的概念;
2.会按要求进行近似数的运算
教学过程
一、创设情境,导入新课
1.什么叫实数?实数怎么分类?
2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?
3.做一做
如果正方形abcd的面积为3平方厘米,正方形efgh的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?
二、合作交流,探究新知
1 交流上面问题的做法
(1)估计同学们会有两种做法:
用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)
(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:
如果没有两种做法,也要想办法引出这两种做法
两种做法的'答案不同,哪一种答案正确呢?
请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?
这时两种做法的答案就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念
在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?
先思考:0.010256精确到小数点后面第三位,等于多少呢?
0.0102560.0103
近似数0.0103有三个有效数字1、0、3
现在你能说说,什么叫近似数的有效数字吗?
从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:1 近似数0.03350有几个有效数字,分别是______________________.
2 125万保留两个有效数字等于__________
3 有_______个有效数字。
3、怎样进行近似值的运算?
在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。
例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。
(2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。
例2 在上面做一做问题中 ,如果分别以正方形abcd、efgh的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)
考考你:1.计算(精确到小数点后面第二位)(1),(2)
2.计算(保留三个有效数字)(1) (2)
三、应用迁移,巩固提高
例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?
变式:上面问题中27倍改为:8倍,其他不变
例4 已知求a+b的值。
例5 设a、b为实数,且求的值。
四、反思小结,拓展提高
这节课,你认为最重要的是什么?
1.有效数字的概念;2.实数的近似数的计算
3.2实数教案篇3
知识与技能:
掌握本章基本概念与运算,能用本章知识解决实际问题。
过程与方法:
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
情感态度:
领悟分类讨论思想,学会类比学习的方法。
教学重点:
本章知识梳理及掌握基本知识点。
教学难点:
应用本章知识解决实际与综合问题。
一、知识框图,整体把握
教学说明:
1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解
1、利用平方根的.概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。
例1已知某数的平方根是a+3及2a—12,求这个数。
分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0
解得a=3
∴a+3=6,2a—12=—6
∴这个数是36
教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。
2、比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
3.2实数教案篇4
课题:一元二次方程实数根错例剖析课
【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。
【课前练习】
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
【典型例题】
例1 下列方程中两实数根之和为2的方程是()
(a) x2+2x+3=0 (b) x2-2x+3=0 (c) x2-2x-3=0 (d) x2+2x+3=0
错答: b
正解: c
错因剖析:由根与系数的关系得x1+x2=2,极易误选b,又考虑到方程有实数根,故由△可知,方程b无实数根,方程c合适。
例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )
(a) k>-1 (b) k<0 (c) -1< k<0 (d) -1≤k<0
错解 :b
正解:d
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。
错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。
正解: -1≤k<2且k≠
例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。
正解:m = 2
例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ 4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2.25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
?练习】
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<
∴当k< 时,方程有两个不相等的实数根。
(2)存在。
如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。
∴当k= 时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。
(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4
∴当a≥ -4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
【小结】
以上数例,说明我们在求解有关二次方程的'问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
【布置作业】
1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。
求证:关于x的方程
(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。
考题汇编
1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
3.2实数教案篇5
学习目标:
1、使学生了解无理数和实数的意义能用夹值法求一个数的算术平方根的近似值;.
2、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数
夹值法及估计一个(无理)数的大小的思想。
学习重点:无理数及实数的概念
学习难点;实数概念、分类.
学习过程:
一、学习准备
1、写出有理数两种分类图示
2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
二、合作探究
1、阅读课本第11页的思考,想一想怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?动手试一试,并绘出示意图
方法1:方法2:
2、我们已经知道:正数x满足=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第11页的大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?阅读课本第11、12页夹值法探究,尝试探究,完成填空:
因为()2=3
所以
因为()2=3
所以
因为()2=3
所以
因为()2=3
所以
像上面这样逐步逼近,我们可以得到:≈
3、用计算器得出,的结果,再把结果平方,你有什么发现?多试试几个。
4、什么是无理数?例举我们学过的一些无理数
5、无理数有几种分类方法,写出图示。
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、判断:
①实数不是有理数就是无理数。()②无理数都是无限不循环小数。()
③无理数都是无限小数。()④带根号的数都是无理数。()
⑤无理数一定都带根号。()
2、实数,,,3.1416,,,0.2020020002……(每两个2之间多一个零)中,无理数的个数有()
a.2个b.3个c.4个d.5个
3、下列说法中正确的是()
a、a.无理数是开方开不尽的数b.无限小数不能化成分数
c.无限不循环小数是无理数d.一个负数的立方根是无理数
4、将0,3.14,,,π,,,,,,0.7070070007…分别填入相应的集合内.
有理数集合{ …};正分数集合{ …}
无理数集合{ …};负整数集合{ …}
实数集合{ …}.
拓展训练:
1、在实数范围内,下列各式一定不成立的有()
(1)=0;(2)+a=0;(3)+=0;(4)=0.
a.1个b.2个c.3个d.4个
2、阅读课本第18页“不是有理数”的证明。
3、根据右图拼图的启示:
(1)计算+=________;
(2)计算+=________;
(3)计算+=________.
数学小知识——祖冲之和π值的计算
祖冲之(429~500),中国南北朝时期著名的数学家和天文学家.他在数学上的主要贡献是:
1.推算出圆周率π在不足近似值3.1415926和过剩近似值3.1415927之间、精确到小数点后7位.
2.和祖暅一起解决了球体积的计算问题,得到球体积公式,并提出了“幂势既同、则积不容异”的原理.
祖冲之还找到了两个近似于的分数值,一个是,称为约率,另一个是,称为幂率,后者是祖冲之独创的,因此,后人称之为“祖率”,以纪念这位数学家.
3.2实数教案篇6
复习目标:
1、复习基本概念形成知识体系;
2、会利用图形的分割法求图形的面积。
复习过程:
一、板书课题,出示目标:
同学们,今天,我们一起来复习第六章,本节课的`学习目标是:
二、指导检测:
复习目标达到,从认真做检测题开始,下面,请看检测要求:
检测指导
1.认真审题,细心计算;
2. 把字写端正,步骤写完整;
3. 在十五分钟内完成。
预祝大家出色完成任务!
三、学生检测,教师巡视
a:p58“知识结构图”,完成p60 4、5
b:学生检测,教师巡视,搜集学生出现的错误,进行第二次备课。
四、板演、更正答案:
a:分别让2名学生上堂板演,有错误,鼓励其他同学更正。
b:对改(下面,比谁能在2分钟内对改完,不出错)
五、讨论:
1.独立更正:
2.小组讨论:(自己不能独立更正的题,小组解疑)
3.可能出现错误,需要集体讨论:(会了的小组帮助不会的小组解疑,若没有不同答案的且正确的,肯定答案,不讨论。如果有不同意见的,让同学讨论。)
可能出现错误需讨论的有:
评:第4题
(1)坐标对吗?(估计问题不大)
(2)他路上经过的地方对吗?(估计问题不大)
(3)图形对吗?(估计问题不大)
第5题
(1)红色图形平移的对吗?为什么?
引导学生说出:可以有两种平移的方法:第一种方法:先向上平移6个单位,再向右平移3个单位;第二种方法:先向右平移3个单位,再向上平移6个单位。
(2)略
归纳总结:同学们,通过本节课的学习,你有哪些收获?引导学生说一说解类似题时该注意哪些问题?
六、课堂作业
必做题:p60 6、8
思考题:p61 10
3.2实数教案6篇相关文章: