解方程五年级数学教案7篇

时间:
Trick
分享
下载本文

通过与同事交流,我们可以获得更多关于教案设计的灵感与建议,理想的教案应鼓励学生提出问题,以培养他们的好奇心和探究能力,文笔巴巴小编今天就为您带来了解方程五年级数学教案7篇,相信一定会对你有所帮助。

解方程五年级数学教案7篇

解方程五年级数学教案篇1

教材内容:

人教版小学数学第十册《解简易方程》及练习二十六1~5题。

教材简析:

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

教学目标:

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

教学重点:

理解方程的意义,掌握方程与等式之间的关系。

教具准备:

天平一只,算式卡片若干张,茶叶筒一只。

教学过程:

一、创设情境,自主体验

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知

在教学解方程和方程的解的概念时,通过出示两道自学思考题

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。

解方程五年级数学教案篇2

教学目标:

1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

2、会用方程表示简单的等量关系,会列方程解决简单问题。

3、感受式与方程在解决问题中的价值,培养初步的代数思想。

教学重点:

明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

教学难点:

找等量关系式,用方程解决实际问题。

教学过程:

一、导入

我们都记得这首儿歌

一只青蛙一张嘴,两只眼睛四条腿;

两只青蛙两张嘴,四只眼睛八条腿;

请你来接下句

三只青蛙_________;

五只青蛙呢?

n只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

二、进行复习

1、用字母表示数

(1)同学们想一想,在数学中有哪些地方常用字母来表示?

生列举:数量关系(路程、速度、时间 即s=vt)

计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

运算定律(加法结合律:a+b+c=a+(b+c)等)

(2)请同桌之间相互举两个这样的例子。

(3)你们知道为什么用字母表示数吗?

(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的.意义。

(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

算法有两种:其一:算术方法:160÷(5+3)=20

依据:总插秧数量÷时间=单位时间量

其二:列方程:x(5+3)=160

依据:单位时间量×时间=总插秧数量

观察比较:以上两种解法有哪些相同点和不同点?

相同点:都是根据数量间的相等关系列式。

不同点:解法一:以已知推出未知,是算术法。

解法二:把未知数用x表示,列出含有未知数的等式,即方程。

同学们想一想,等式和方程有什么联系和区别?

方程有哪些性质呢?(等式 、含有未知数)

2、方程

(1)判断下列哪些是方程(说明理由)

7+8=3×5 4a+5b a+12=89

4x=y 3+100>25+y 6+x=0.5×3

(2)你会解方程吗?从中选择一个试一试。

(3)如何判断方程的解是否正确?

(4)列方程解应用题的解题步骤是怎样的?

讨论后得出:①弄清题意,找出未知数,并用x表示;

②找出应用题中数量之间的相等关系,列方程;

③解方程;

④检验,写出答案。

3、列方程解决问题

(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

(3)练习

①练一练1

②师展示习题:说出下面每组数量之间的相等关系。

(1)女生人数,男生人数,全班人数;

(2)苹果的重量,梨的重量,梨比苹果少的重量。

(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

③课本练一练5

三、小结

说一说你今天的收获在哪里?

解方程五年级数学教案篇3

【教学内容】:

?义务课程标准实验教科书数学》五年级上册第

58、59页例

1、例2。

【教材分析】:

本节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。主要讨论x+a=b, ax=b的方程的解法。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。

【教学目标】:

1、能根据等式的性质解较简单的方程。

2、通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。

3、培养规范书写和自觉检查的习惯。

【教学准备】:

挂图、天平、小球、小黑板等。

【教学课时】:

1课时。

【教学过程】:

(一)、复习旧知,导入新课

1、什么叫方程的解?什么叫解方程?

方程的解:使方程左右两边相等的未知数的值,叫做方程的`解; 解方程:求方程的解的过程叫做解方程;

揭示课题:这节课我们就来学习解最简单的方程——简易方程。 板书:解简易方程。(学生齐读课题)

(二)、提出问题,探究新知

1、提出问题,教学例1 师:请看挂图,请你说出图上的意思。(盒子里有x个小球,盒子外有3个球,合起来一共是9个小球。)

师:能不能用我们新学的方程解决这个问题

学生列出方程:x+3=9(引导学生根据加法的意义列出方程。)

师:同学们根据加法的意义的到方程x+3=9,(板书:x+3=9)那么x是多少?(异口同声说6)

- 1x+3=9 解: x+3-3=9-3 x=6 提问书写解方程的过程要注意什么?

教师示范书写格式,

①、先写方程x+3=9。

②、接下来写“解:”。

③、方程的左右两边同时减去3。

④方程的左边只剩下未知数x。方程的右边9-3是6。得到方程的解是x=6。

在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。另外还要注意等号对齐。

师:x=6是不是就是正确答案呢?我们来验算一下。 指名学生回答,教师板书:方程的左边= x+3 =6+3 =9 =方程的右边

所以x=6是方程的解

像这样我们就把x+3=9这个方程的解解了出来,那么我们是怎么做到的?

我们是在方程两边同时减去同一个数,方程左右两边仍然相等。

5、巩固练习

20+x=47 解: 20+x○□=47○□ x=□

(自己解方程,对照答案,检查自己做的,哪儿错了。)

(设计意图:从一开始就强化必要的书写规范,以发挥首次感知先入为主的强势效应,有利于促进良好的书写习惯的形成。)

6、教学例2 师:同学们我们刚才用解方程的方法求出了x+3=9这个方程的解是x=6那么你对解方程这个概念是不是有一点感觉不知道换一种形式你还有没有把握。

出示例2:解方程3x=18 师:你能用解这个方程吗? 3x表示什么意思?

那么这个方程就可以理解成已知3个X等于18,求一个X等于多少? 师:请同学们独立思考,自己试着完成例2的填空,并自己验算。

7、讨论交流:

①、你是怎样让方程的左边只剩下X,还能让方程的两边相等? ②、怎样把这个过程在方程中表示出来,又使方程左右两边保持相等?

3x÷3=18÷3

解方程五年级数学教案篇4

教学目的:

1、使学生学会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。

2、使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

3、通过解决问题激发学生热爱新校的情感。

教学重点:

分析题中数量间的相等关系,并列方程,提高用方程解应用题的能力。

教学难点 :

根据不同的数量间的相等关系,列出多种不同的方程,体会列方程解应用题的优越性。

教学准备:课前调查老校与新校各方面的变化的数据;多媒体课件。

教学过程 :

一、课前谈话 激发兴趣

师:同学们,这个学期我们搬进了新的学校,你的心情怎样?

通过调查你发现新校与老校相比有什么不同?(学生自由说)

(评析:学生刚刚搬进漂亮的新校,充满了好奇,让他们课前调查, 他们当然是乐开花,调查中,学生进一步地认识、了解了自己的新学校,而且用他们调查的数据作为下面的学习的材料,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学。)

二、展示信息 提出问题

师:的确,就象同学们所说的,新校与老校相比发生了非常大的变化。

根据学生的交流选择信息出示下表:

信息1

信息2

问题

老校有电脑40台

新校的电脑比老校的6倍多35台

新校有1550人在校就餐

比老校的3倍多200人

新校有图书49500册

比老校的4倍多1500册

新校的人均绿化面积是13.5平方米

比老校的4倍少2.5平方米

师:你能根据上面的信息,提出数学问题吗?

根据学生的回答逐步出示问题。

(1)新校有多少台电脑?

(2)老校有多少人在校就餐?

(3)老校的人均绿化面积多少平方米?

(4)老校有多少万册?

师:刚才同学们给每一组信息提出了一个问题,组成了四道应用题。

第一个应用题应该怎样解答?(学生口答)

(评析:突破传统的应用题的呈现方式,通过选择学生调查的信息,请学生提出问题的方式使复习题、例题和练习题整体呈现,促使学习内容在动态中生成,激活了学生的认知需求与思维热情,使其积极主动地参与到下面的学习活动中。)

三、体验交流 探索新知

1、师:下面我们看第二个题目,谁来把这个题目读一读。这道题目老师想请同学们在试着做做看。(只需列出式子)

汇报交流。

估计学生有以下几种方法(根据学生的回答板书):

3x=1550-200 3x+200=1550 (1550-200)÷3

1550-3 x =200 (1550+200)÷3

(1)先让学生说说左面三种方法分别是怎样想的?

师:其实这三种方法之间也有一定的联系。有什么联系?(同桌讨论)

(2)再让学生讨论右面两种方法,根据这两个算式的计算结果,学生很容易发现其中一种肯定是错误的。

让学生充分地发表自己的意见,并随机出示线段图帮助学生进一步地理解。

师:请同学们任意选择一种方法把它计算出来。指名板书。

2、师:解答好了,接下去还要做什么?(学生检验并交流)

3、比较

(1)比较第2题的算术解和方程解。

师:这道题用算术方法和方程都可以解。谁来说说你喜欢用哪一种方法?为什么?

(2)比较第2题和第1题。

师:第1题为什么用算术方法解?(学生充分交流)

师小结:通常我们用方程来解象第2题这样的应用题。

揭示课题:列方程解应用题。

4、练习

(1)学生列方程解第3题。

学生练习,指名板演。

师:谁来评一评他做得怎么样?

(2)学生列方程解第4题

师:谁来说说第4题和第2、第3题有什么不同?

(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)

四、畅谈感受 深化体验

师:通过同学们的计算,我们又获得了一些有关老校与新校的信息,请同学们再把我们新校与老校的有关数据比较一下,你有什么感受?或者想说些什么?

8、通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么?

(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键;通过比较,学生进一步地感受到新校和老校相比发生了巨大的变化,激发了学生发自内心的爱校之情,激励学生珍惜优越的学习环境,努力学习。)

五、分层练习 讲究实效

过渡:老师这里有这样的一些关键句,请你根据这些句子说出等量关系式。

1、找等量关系(课件出示)

(1) 今年养兔的只数比去年的3倍少8只

(2) 红毛衣的件数比蓝毛衣的2倍还多13件

(3) 买3个篮球比4个排球多用去5元

(4) 比小孩服装的5倍少3套是大人服装。

2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。

3、游戏(机动)

师:指名问学生几岁?__×同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?

请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。

(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)

解方程五年级数学教案篇5

练习内容:

练习三十第10~18题。

练习要求:

使学生能根据应用题的具体情况灵活选用算术解法或方程解法,培养学生灵活运用知识的能力。

练习重点:

分析题目中数量关系的特点,恰当地选择解题方法。

练习过程:

一、基本练习

1.解方程。

(1)3(x+2.1)=6.9(2)4x+5×6=94

(3)0.5×8-l0x=3.5(4)32x-7x-x=360

2.列出方程,并求出方程的解。

(1)一个数减去3.5的4倍,差是25,求这个数。

(2)比1.8的5倍多z的数是12,求x。

(3)1.8比某数的2倍少0.6,求某数。

二、指导练习

1.练习三十第11题

⑴学生独立解答后,集体订正。

⑵订正时,让学生说一说是根据什么等量关系式列的方程(是根据买2个足球的钱+买25根跳绳的钱=192.5元)

⑶设每根跳绳x元,25根就是25x,每个足球80元,2个就是80×2,所列方程为:80×2+25x=192.5)。

⑷让学生说一说用算术方法解的思路。

2.练习三十第13题。

先让学生解答,如果有困难,可以稍加提示:改排前后书的字数不变。如果有学生用方程解,可让他们说说是怎样解的,并给予表扬。同时说明这道题用方程解和用算术方法都可以。

3.练习三十第15题。

第16题与例5相比,增加了一个条件,因此可以列出不同的方程。如设《故事大王》的单价为x元,则可列出以下几个方程:

4×1.6+4x+7.6=20,

20-4×(1.6+x)=7.6,

4x=20-4×1.6-7.6

鼓励学生列出不同的方程,然后可以讨论哪个简便。

4.16题是例4和例6的`综合。可以根据例6的思路,先列出杏树棵数。在列方程时,用含有x的式子来表示桃树的(x+20),又要用到例4的知识,这也是解答本题的关键。

5.练习三十二第18题。

17题是例5和例6的综合。可以先设乙汽车每小时行x千米,列出类似于例5的方程:4x+4×2x=480或4x(x+2x)=480;也可以列出类似于例6的方程:x+2x=480÷4。

三、课堂练习

练习三十二第10、12、14、15题。

解方程五年级数学教案篇6

教学目的:

1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2.培养学生观察、比较、抽象、慨括的能力。

3.培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

教学难点:质数、台数、济数、偶数的区别

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小的分类方法。明确:分类的际准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的.尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作.找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念.提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

15 28 31 53 77 89 1ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

三、练习巩固

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22 29 35 49 51 79 83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

五、布置作业(略)。

解方程五年级数学教案篇7

一、教学目标

1、知识目标:使学生在具体情境中理解与掌握方程的意义,认识方程和等式之间的关系,使学生初步理解等式的基本性质。

2、能力目标:使学生在观察、思考、分析、抽象、概括的过程中,经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展学生思维的灵活性。

3、情感态度与价值观:使学生在积极参与数学活动的过程中,加强数学知识与现实世界的联系,培养学生认真观察、善于思考的学习习惯与数学应用意识,渗透转化的数学思想。

二、学情分析

学生对于利用天平解决实际问题较感兴趣,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

三、重点难点

教学重点: 让学生理解并掌握等式与方程的意义,体会方程与等式之间的关系。

教学难点: 体会方程与等式之间的关系。

四、教学过程

活动1【导入】

谈话导入 出示,讨论天平的作用及用途,平衡状态和倾斜状态各说明什么情况。平衡状态说明托盘两边质量相等,倾斜状态说明托盘两边质量不相等。

活动2【讲授】

探究授新

一、 认识等式与方程。

1、出示(一),天平的两边放上砝码左边20克和30克,右边50克。提问:你看到天平怎样?天平平衡,说明什么?(生:说明两边质量相等。) 你能用式子表示两边物体之间的质量关系吗?(20+30=50)为什么中间用等号? 指出:像这样表示相等关系的式子就是等式。

2、出示(二),把左边的其中一个20克砝码换成x克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x+30=50)

3、出示(三),把左边托盘中的`一个x克的砝码拿走,右边的50克砝码换成30克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x>30, 30<x)

4、出示(四)天平图 你能用式子表示两边物体之间的质量关系吗? (x+x =100或 2x=100 )

5、出示(五)天平图 你能用式子表示两边物体之间的质量关系吗? (10+ x<80或80>10+ x )

6、出示刚才5道不同的式子。让学生分组讨论对5道式子进行分类。(提示:要按一定的标准进行分类。)指名分类,要求说出分类标准。

7、对“是等式的”与“含有字母的”式子进行再次分类。 “是等式的”分为“不含有字母的等式”、“含有字母的等式”。 “含有字母的”分为“含有字母的等式”、“ 含有字母的不等式” 观察“是等式的”中“含有字母的等式”与“含有字母的” 中“含有字母的等式”发现了什么?这些式子有什么共同的特征?

8、师小结:像这样含有未知数的等式是方程。 你能举出一些方程吗?(先指名说,后同桌互说。)

9、揭示课题:认识方程。

二、认识等式与方程关系

1、认真观察刚才的(1)20+30=50 (2) x+30=50(5) 2x=100,问:(1)是等式吗?是方程吗啊?(2)(5)是方程吗?是等式吗?

2、小结:是方程一定是等式,是等式不一定是方程。

3、你能不能用图形表示方程和等式之间的关系吗?

引入集合圈表示它们之间的关系。

三、巩固新知

1、哪些是等式?哪些是方程?为什么?

① 35- =12 ( ) ⑥ 0.49÷ =7 ( )

② +24 ( ) ⑦35+65=100 ( )

③ 5 +32=47 ( ) ⑧-14> 72 ( )

④ 28<16+14 ( ) ⑨ 9b-3=60 ( )

⑤ 6(a+2)=42 ( ) ⑩+=70 ( )

2、请同学们自己写出方程与等式各3个。

3、张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

4、判断。(正确的打“√”,错误的打“×”。)

(1)含有未知数的等式是方程( )

(2)含有未知数的式子是方程( )

(3)方程是等式,等式也是方程( )

(4)3=0是方程( )

(5)4+20含有未知数,所以它是方程( )

5、列出方程

(1)x加上42等于56。

(2)9.6除以x等于8。

(3)x的5倍减去21,差是14。

(4)x的6倍加上10,和是20.8。

6、看图列出方程。

列方程时,一般不把未知数单独写在等号的一边

7、先读一读,再列出方程

(1)一辆汽车的载重是5吨,用这辆汽车运x次,可以运40吨货物?

(2)一瓶矿泉水的价格是2.5元,一个面包的价格是x元,买2个面包和1瓶矿泉水一共花了11.9元。

四、 课外小知识,介绍方程的历史,让孩子们体会学习方程的用途。

小结,通过今天的学习你有什么收获?你还想学习方程的那些知识?

板书设计:

认识方程

20+30 = 50

x +30 = 50 含有未知数的等式,叫做方程。

x > 30 方程一定是等式;

2 x = 100 等式不一定是方程。

10 + x < 80

解方程五年级数学教案7篇相关文章:

部编版五年级语文上册教案6篇

五年级数学下学期教学计划优秀8篇

五年级数学下学期教学计划8篇

小学五年级数学教研工作计划5篇

五年级数学上册教学工作计划5篇

北师大五年级数学下册教学计划6篇

五年级下数学工作总结参考6篇

五年级下数学工作总结优秀6篇

五年级数学下学期教学工作计划优质5篇

五年级数学下学期教学工作计划6篇

解方程五年级数学教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
154453