小学六年级解比例教案6篇

时间:
lcbkmm
分享
下载本文

我们在教学过程中,通过详尽的教案可以更好地掌控课堂节奏,教案的结构清晰可以帮助学生更好地抓住重点内容,下面是文笔巴巴小编为您分享的小学六年级解比例教案6篇,感谢您的参阅。

小学六年级解比例教案6篇

小学六年级解比例教案篇1

教学内容:

补充有关比例意义、基本性质和解比例的练习

教学目标:

1.进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。

2.进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。

3.通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。

教学措施:

帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。

教学准备:

上传补充练习

教学过程:

一、整理知识

1.提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。

2.学生同桌之间进行交流。

3.指名学生交流,教师相机板书,将知识点进行梳理和归纳。

4.揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)

二、基本练习

1.判断。

(1)比例是一个等式。

(2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。

(3)比例的两个内项减去两个外项的积,差是0。

(4)任意两个正方形的周长与边长的比都可以组成比例。

(5)如果a╳9=b╳6(a、b均不为0),那么,a与b的比是3:2。

组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。

2.根据下面的等式,写出几个不同的比例。

3╳40=8╳15

(1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?

(2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。

3.判断四个数10.5、5/4、20/21、8能否组成比例?

(1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)

(2)你认为这里选择哪种方法比较方便?

(3)指名学生交流后,学生写出比例。

小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。

4.按要求组成比例。

(1)从2、10、4.5、9、5五个数中选出四个组成一个比例。

(2)从18的所有约数中选出四个组成一个比例。

(3)把8和9作两个外项,比值是1/2的一个比例。

(4)给5、8、0.4三个数分别配上一个不同的数,组成两个不同的比例.

逐个出示题目,学生练习之前先要弄清题目要求。

学生完成后进行交流,要求说说自己的思考过程,教师及时评价。

教师要及时关注学生存在的问题及时辅导。

5.根据比例的基本性质,在括号里填上合适的数。

15:3=( ):1 2:0.5=12:( )

0.3/4=( )/32 7/9:( )=1/2:3/5

( )/12=3/18 ( ):4.5=0.4:9

先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。

三、解比例

25:7=x:35 514: 35= 57:x 23:x= 12:14 x:15=13: 56

2、根据下面的条件列出比例,并且解比例

a. 96和x的比等于16和5的比。

b. 45 和x的比等于25和8的比。

c. 两个外项是24和18,两个内项是x和36 。

四、全课总结

通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?

四、布置作业

补充相应练习

小学六年级解比例教案篇2

教学目标:

1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。

2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

3.理解比例尺的书写特征。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的.办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。

4.介绍放大比例尺

出示图例2

在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。

小学六年级解比例教案篇3

教学内容:比例尺

教学目的:使学生理解比例尺的意义,掌握求比例尺,求实际距离和求图上距离的解题方法,并会运用这些方法解这类应用题。

教学重点:掌握求比例尺的解题方法。

教学准备:世界、中国地图。

教学过程:

复习

1、 复习提问:长度单位有哪些?它们之间相邻的进率是多少?

2、 什么叫做比?

3、 化简下面各比。

0.4/0.6 1/4:8 10厘米:100厘米 2米:140厘米

一、 导入新课

出示世界地图:让学生观察。

师:地图或其他平面图都是把实际距离缩小或方大一定的倍数画面的。利用这张地图,我可以很快告诉你两地之间的实际距离。你想知道哪两地间的实际距离呢?请同学们出题考老师。

学生提问,老师用直尺在地图上量出图上距离,再心算出实际距离后回答。

师:仅靠这把直尺是早不出两地实际距离的,还要用地图上的比例尺去计算。地图的这个尺与手中的尺不同。今天我们就来学习地图上的尺――比例尺。(板书课题)通过这节课的学习,大家就能掌握老师刚才的本领了。

二、教学

1. 教学例4,设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

(1) 读题、理解题意。

求图上距离和实际距离的比是什么意思?图上距离是多少?实际距离是多少?它们的比呢?长度单位相同吗?单位不同怎么办?

(2) 学生边口答,师边板书如下:

图上距离/实际距离=10米/10厘米=1000/10=100/1

1、 归纳总结:根据刚才例4,说说什么叫比例尺?怎样求比例尺?谁是前项?谁是后项?

师:比例尺是表示图上距离与实际距离之间的倍数关系,是一个比,它不带计量单位。求比例尺时图上距离和实际一定要先化成同级单位后再化简。为了计算简便,通常把比例尺写成前项是1的比。如例4的`比例尺应写成1:100或100/1。有时放大的比例尺后项为1。

3、练习。

(1) 下面这段话中的各比,哪些是比例尺,哪些不是?为什么?

把一块长50米,宽10米的长方形地,画在一幅平面图上,长画25厘米,宽画5厘米。那么图上长和实际长的比是200/1;图上宽与实际宽的比是200/1;图上周长与实际周长的比是200/1;图上面积与实际面积的比是40000/1;实际宽与实际长的比是5/1;实际长与图上长的比是200 :1。

(2) 课本第6页的做一做练习后讲评。

4、教学例5。

(1) 在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?

学生读题,理解题意,已知什么条件?要求什么问题?怎样得用比例尺的关系式来解答?用方程解,X该设什么单位?为什么?列式时,比例尺要用什么书写形式?

学生尝试练习后,对照课本检查。指名板演后,讲解。强调设实际距离是X厘米,算出实际距离的厘米数后,要再变成千米数。

(2) 练习:课本第7页的做一做,练后教师讲评。

三、巩固练习

例5有其他解法吗?怎样解?

提示:实际距离等于什么?图上距离等于什么?

四、 总结

小学六年级解比例教案篇4

教学目标:

1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

教学重、难点:

重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学准备:cai课件

教学过程:

一、复习、导入

1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?

2、 课件显示:算出下面每组中两个比的比值

⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

二、认识比例的意义

(一)认识意义

1、 指名口答上题每组中两个比的比值,课件依次显示答案。

师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

数学中规定,像这样的一些式子就叫做比例。(板书:比例)

[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

(二)练习

1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(1)学生独立完成。

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第一题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、教学比例各部分的名称

(1) 课件出示: 3 : 5

前项 后项

(2) 课件出示:3 : 5 = 18 : 30

内项

外项

(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:3/5=18/30

[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

5、小结、过渡:

刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

三、探究比例的基本性质

1、课件先出示一组数:3、5、10、6

再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

2、 独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6:3=10:5

3、 引导发现规律

(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

(3)学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

4、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组),学生验证。

⑵学生任意写一个比例并验证。

⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

四、 综合练习

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9

1.4 :2 和 5 :10

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ② 20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

1.5:3=( ):4

=

12:( )=( ):5

[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

五、全课总结(略)

小学六年级解比例教案篇5

教学内容:六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。

教学目标:1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:理解比例尺的意义。

教学难点:根据比例尺求图上距离和实际距离。

教具准备:多媒体课件一套。

教学过程:

一、问题的情景:

1. 出示邮票。问:你能同样大小的把它画在图纸上吗?

让同学们画一画,再拿出邮票的长,比一比,怎么样?

归纳:(同样长)得:图上的长和实际的长的比是1:1。

2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?

如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?

4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

板书:比例尺

二、问题解决:

5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

6. 小组回报设计方案,教师选择以下四种方案。

(1).用9厘米表示9米

(2).用4.5厘米表示9米

(3).用3厘米表示9米

(4).用1厘米表示9米

7. 说说以上方案是图上距离比实际距离缩小了多少倍?

算一算,每幅图 图上距离和实际距离的比。

(1).9厘米9米=9900=1100

(2).4.5厘米9米=4.5900=1200

(3).3厘米9米=3900=1300

(4).1厘米9米=1900

8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺 或 图上距离

实际距离

9. 讨论汇报:上面四幅图,比例尺是多少图最大?

比例尺是多少图再小?为什么?

10. 练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

11. 比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

12. 比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

三、问题的应用:

根据比例尺的'关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

x=105000000

105000000厘米=1050千米。

答:上海到北京的实际距离大约是1050千米。

(2).分析讲述:

根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

(先设x,再根据比例尺的计算公式列出方程。)

(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

(5)尝.试练习第57页试一试。

河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

小学六年级解比例教案篇6

【学习内容】

?义务教育课程标准实验教科书 数学》(人教版)六年级下册第41页。

【教材分析】

“比例的基本性质”是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【设计理念】

数学学习是一个学生自发探究的过程,因此,要让学生经历“自主发现问题——自主提出猜想——自主实施验证——自主归纳结论”的过程掌握比例的基本性质;本课的设计旨在为学生的探究学习创设简洁、开放的情境,让学生充分经历探究过程,学会探索方法,体验数学思想,发展数学素养。

【学习目标】

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

4 能根据乘法等式写出正确的比例。

【评价设计】

1.通过练习1检测目标1的达成;

2.通过练习1检测目标2的达成;

3.通过练习1、2、4检测目标3的达成.

4.通过练习3检测目标4的达成.

【学习重点】探索并掌握比例的基本性质。

【学习难点】 能运用比例的基本性质判断两个比能否组成比例。

【教学准备】课件

【学习过程】

一、认识比例各部分的名称

1、复习

(1)什么叫做比例?什么样的两个比才能成比例?

(2)应用比例的意义,判断下面的比能否组成比例。

6:15和8:20 0.5:0.4和2:25

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: 1 = 7 :5

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)应该怎样举例呢?你有什么好方法?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

①前后4个同学为一个小组;

②每个同学写出一个比例,小组内交换验证。

③通过举例验证,你们能得出什么结论?

4、归纳

我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式,这怎么相乘?(交叉相乘)

三、巩固练习

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5

先让学生尝试判断,再交流,明确思考方法。

应用比例的基本性质判断

(2)还可以用什么方法来判断?用求比值的方法判断能否组成比例可以吗?(将学生分两大组,分别用上述两种方法进行判断)

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

某同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?(强调有序思考)

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把 “( )”改为“x”就是我们下节课要学习的知识:解比例。

四、分享收获 畅谈感想

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?

小学六年级解比例教案6篇相关文章:

小学六年级家委工作总结6篇

小学数学六年级教学工作总结推荐6篇

小学英语六年级个人工作总结6篇

小学体育五六年级教学计划6篇

小学六年级家委工作总结优秀6篇

小学语文六年级培优补差工作计划6篇

小学六年级家委工作总结模板6篇

一年级上册语文园地六教案6篇

人教版六年级桥教案6篇

2023年小学六年级语文教学工作总结6篇

小学六年级解比例教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
145295