人教版五上数学教案精选6篇

时间:
pUssy
分享
下载本文

教案的准备可以让教师提前思考和解决可能出现的问题,提高教学效果,教案可以帮助教师制定好课堂活动的目标和任务,以促进学生的学习动力和参与度,下面是文笔巴巴小编为您分享的人教版五上数学教案精选6篇,感谢您的参阅。

人教版五上数学教案精选6篇

人教版五上数学教案篇1

教学内容:

第93---95页。

教学目的:

1、 通过估算练习,使学生进一步掌握两位数加一位数(进位)算法,提高计算效率。

2、通过对实际问题的解答,提高学生看题,理解题意,把生活问题转化为数学问题的能力。

3、培养学生的数学兴趣和同学友好合作的态度。

教学重点:

进一步掌握两位数加一位数(进位)口算,提高计算效率。

教学难点:

培养估算意识和解决实际问题的能力。

教学准备:

课件、投影仪等。

教学过程:

教学建议 教学过程 修改意见 让学生通过情境,培养计算的正确率

时间掌握在2.5分钟。

让学生说说是怎样估算的,并明确估算是通过判断进位加还是不进位加进行的。

帮助学生弄懂题意,理出解题思路,再解决实际问题。并利用情境出示的条件,培养学生思维的开放性,提出不同的问题加以解决。

可以各种形式让学生提问,求差,求和都行。让学生畅所欲言。

一、创设情景,激发学习兴趣。

谈话:小朋友,你们看,两只小蚂蚁要过河了。你们能不能帮帮他们呢?不过,帮助小蚂蚁的同学要听老师提一个要求,一定要把题目算对,小蚂蚁才能安全地过河。

出示课件:第7题。

分小组进行比赛,看哪个小组先到达终点。对先到达终点的小组给予表扬,对最后到达的小组要鼓励他们不要灰心,争取下次比赛获胜。

二、基本练习。

1、第8题。

学生自己做题,然后同桌对答案,说算法。看谁算得又对又快。再集体订正。

2、第6题。

复习两位数加一位数(不进位)的估算方法。

先出示:6+52 74+5 得数是几十多?

指名估算,并说说你是怎样估算的?

再出示:48+3

65+6

问:两位数加一位数(不进位)我们会估算了,下面这两题有什么不同?

4人小组讨论,合作完成。小组汇报。

总结两位数加一位数(进位)的`估算方法。

估算后,再让学生通过计算检查估算是不是合理。

三、拓展延伸。

1、 第9题。

课件出示,引导学生看清图意。从图上你知道了什么?

四人小组讨论,集体汇报。

你怎样知道哪个队得分最多,是多少分?关键要先知道什么?(各队得的名次和各名次的得分)

请同学们选择一个你喜欢的动物,为它计算得分,看谁的动作比较快。四人小组合作

三队的得分算出来后,你有办法给它们颁奖吗?

看这幅图,你还能提什么问题吗?四人小组讨论。

五、总结评价。

同学们这节课都开动了脑筋,与周围同学合作和自己的主动探索学会了很多知识。谁能说说你今天学到了什么?

同学们回家把第9题提些问题考考爸爸妈妈,看谁提出的问题最多。 教 学 后 记 通过估算练习,使学生进一步掌握两位数加一位数(进位)算法,提高计算效率。通过对实际问题的解答,提高学生看题,理解题意,把生活问题转化为数学问题的能力。培养学生的数学兴趣和同学友好合作的态度。

人教版五上数学教案篇2

教学内容:

课本22页例3和做一做及练习四1、2题。

教学目标:

1、通过活动使学生学会以不同的地点为观测点判断方向。

2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。

3、通过学习,进一步提高学生的空间观念。

重点难点:

使学生进一步认识到位置关系的相对性。

教学用具:

挂图

教学过程:

一、创设情境生成问题

1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。

2、分别指两名学生,让大家根据方向说一说他们的位置关系。

(设计意图:组织学生先弄清东西南北四个方向,再根据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。)

3、师:今天我们就来继续研究两个物体位置的相对关系。

(设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。)

二、探索交流解决问题

1、出示教材第22页例3主题图。

(1)让生观察地图

师:北京和上海两地相距大约1000千米,说一说,上海在北京的什么方向上?

①组织学生用直尺,量角器测量出上海在北京的什么方向上。

师根据学生汇报板书:②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?

组织学生观察上图,在小组中讨论,然后交流说一说。

出示提示

1.确定以谁为观测点,并建立方向标。

2.用语言描述北京和上海的具体位置。

讨论后每组选出一名同学在班内汇报。

生汇报。

可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的方向上。

师对照图示指一指,肯定两种说法都是正确的。

师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。

观测点不同,物体的相对位置就会发生变化。这就是今天这节课学习的内容。

人教版五上数学教案篇3

教学目标:

1、使同学通过观察。交汉等活动,探索并掌握长方形和正方形的周长计算方法。

2、使同学通过观察。丈量和计算等活动,在获得直观经验的同时发展空间观念。

3、使同学在学习活动中体会实际生活中的数学,发展对数学的兴趣,培养交往。合作的探究的意识与能力。

设计理念

一、创设生动情境,激发同学探索的动机。

在这节课中,通过创设两只猫比散步路线的长短这样一个实例,设置悬念,让同学在生动有趣的数学情境中开始学习,并且让这个情景贯穿整节课,充沛调动了同学学习的积极性和主动性。

二、巧设数学活动,激励同学主动探究。

在这节课的设计中,我为同学的探究设计了一系列丰富多彩的活动,让同学通过操作。交流等丰富多样的学习方式,提高学习效率,培养同学的.创新意识。比方:先说怎样可以知道长方形和正方形的周长,让同学借助与自身的生活经验,初步得同长方形周长计算有哪些战略;通过猜一猜图形的周长初步感知计算方法,培养了数学直觉;用自身的方法算一算图形的周长,让同学感悟解决问题的战略多样化;说说自身比较喜欢哪种计算方法,等等。

三、和时反馈反思,渗透学习战略。

在本课的教学中,对学习过程的和时反馈,对解决问题结束的和时反思,使同学能够正确认识自身的认知过程。比方,通过反馈周长的计算方法,暗示性地让同学注意战略的优化;用试一试的方法教学正方形的周长,让同学感受到知识间的内在联系。全课小结时,通过交流收获与体会,使同学感受到胜利的喜悦。

人教版五上数学教案篇4

教学目标:

1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

3、培养学生的迁移、类推能力,以及良好的数学学习品质。

教学重点:

理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

教学难点:

理解一位、两位、三位小数的意义。

教学过程:

一、情境导入:

1、(展示一根绳子)猜猜它有多长?

生猜:1米……

师:要想知道准确的结果,怎么办?

生:量一量。

师:谁愿意来测量一下它的长度?

两名学生合作测量。

师:把你们测量的结果汇报一下。

生:一米。

师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

生猜并测量验证。

师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的`宽度仍用“米”做单位,还能用整数表示吗?

生:不能。

师:为什么不能用整数了?

生汇报

师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

师:那你们说说在哪些地方还见过小数。

生汇报

师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

二、探索交流,建构新识:

(一)理解一位小数的意义。

1.师:请同学们任意说一个小数。

生汇报师板书

师:那老师也来写几个。

0.1 0.01

师:猜一猜老师接下来会写什么?

生:0.001

师:同学们真的是很会推理。

2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

生汇报

师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

3.生展示、汇报

展示若干组学生的画法。

(编号,让学生说出自己的想法。)

师:你认为哪位同学表示出了0.1那么大小。

生:1号;3号;2号;4号。

师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

师:那现在谁来说说0.1到底表示什么?

生汇报师小结:说简单点0.1就表示。(板书)

师:涂色部分为0.1那空白部分用哪个小数表示呢?

生汇报:0.9。

师:怎么看出0.9的?

生汇报

师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

生:1

师:现在我们明白了1里面有(10)个0.1。(板书)

4.再涂1块能看到哪两个小数?

生:0.2、0.8。

师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

生:分母都是10、都是十分之几……

师:那我们就可以说一位小数表示的就是十分之几。(板书)

(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

(二)理解两位小数的意义。

1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

同桌交流讨论。

生汇报:把它平均分成100份,取其中的一份。

预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

师:0.01就表示。还看到了哪个小数?

生:0.99。

师:0.99里面有几个0.01。

生:99个。

师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

2.如何表示0.25呢?

生汇报

师:还能想到哪个小数?他们的分数朋友分别是谁?

生:0.75,分数朋友:

3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

4.师提问:

(1)你涂了哪个小数?

生汇报。

师:猜一猜他涂了几格,还能找到另外一个小数吗?

(2)你涂了几格?谁能知道他写的是哪个小数?

5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

(三)理解三位小数的意义。

1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

师:那它的分数朋友是多少?()

师:那0.237表示什么?它的分数朋友是谁?

生:

师:小数是多少?

生汇报

2.师:谁能找一个大一点的三位小数?

生:0.999 =

师:要在正方形纸上涂上0.999会有什么感觉?

生汇报

如果再涂多少就涂满了?(0.001)

师:那也就是说(1000)个0.001是1。

师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

……

师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

(四)提炼小数意义

1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

生汇报

小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

三、巩固内化:

师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

出示课件练习题。

1、填一填。

2、填上合适的数。

四、回顾反思:

1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

人教版五上数学教案篇5

一、教学目标

(一)知识与技能

1、了解、认识、感知平移现象,理解平移的本质。

2、通过探索掌握平移的特征。

(二)过程与方法

经历讨论、探究、归纳的过程,抽象概括的能力得到培养。

(三)情感态度与价值观

1、通过欣赏数学的美,激发对数学的好奇心和求知欲。

2、体验数学的学习是一个观察、猜想、归纳、验证的过程。

二、教学重点

直观感受平移这种现象,理解平移是在做直线运动。

三、教学难点

掌握平移的特征,培养空间想象能力。

四、教学方法

引导探究法、观察操作法。

五、教学手段

多媒体课件、推拉式的黑板。

六、教学过程

课件出示在商场和游乐园的观光电梯、空中缆车、推拉门三幅图片。

师:请同学们仔细观察上面图片的三个物体分别在做什么运动?(出示情境图给学生时间思考让学生自由发言)

同学们,我们一起来看一看吧。通过刚才的观察,我们发现观光电梯、空中缆车、推拉门这三个物体都在做直线运动。它们的大小、形状、方向都没有发生变化,只是它们的位置发生了变化,我们把这种做直线运动的现象叫做平移。

师:你知道生活中还有哪些物体的运动也是平移吗?(学生根据刚才的所学思考发言)

我们一起来看看吧。举例:拉抽屉、坐公园里的滑滑梯、电动伸缩门、电动推拉门等等这些物体的运动都属于平移。

大家真的很善于观察,知道的课外知识真多。老师相信大家有一双孙悟空的火眼金睛。那么,本节课的内容你掌握了吗?我们一起来总结一下吧。

小结:物体的大小、方向、形状没有发生变化,只是物体的位置发生了变化,我们把这种运动现象叫做平移。

七、作业布置

同学们放学回家后仔细观察一下身边的事物,看看还有那些物体的运动属于平移形象,举例说明。

八、板书设计

平移

物体的大小、方向、形状没有发生变化,只是物体的位置发生了变化,我们把这种运动现象叫做平移。

人教版五上数学教案篇6

教学目标

1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

教学重点

理解对称图形的概念及性质,会找对称轴。

教学难点

准确找全对称轴。

教学准备

1、教具:投影片、图片、剪刀、彩纸。

2、学具:蝴蝶几何图片、剪刀、白纸。

教学过程

(一)导入新课

你们看这些图形好看吗?观察这些图形有什么特点?

(图形的左边和右边相同。)

你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

你怎么知道图形的左边和右边相同?(看出来的……)

还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

(二)讲授新课

1、对称图形的概念。

(1)对称图形和对称轴的定义。

以剪出的图形为例,贴在黑板上。

问:你们剪出的这些图形都有什么特点?

(沿着一条直线对折,两侧的图形能够完全重合。)

师:像这样的图形就是对称图形。(板书课题)

折痕所在的这条直线叫做对称轴(画在图上)。

问:现在谁能准确说出什么是对称图形?什么是对称轴。

板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

(2)加深理解概念。

以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

(3)巩固概念。(投影)

①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

生边回答老师边填在投影片上,并用小棒摆出对称轴。

回答:

1°任意三角形不是对称图形。

2°等腰三角形是对称图形,有一条对称轴。

3°任意梯形不是对称图形。

4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

8°等腰梯形是对称图形,有一条对称轴。

③小结。

问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

④练一练

打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

2、对称图形的.性质。

(1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

(2)测量并归纳性质。

打开书第125页,看下半部分的对称图形,用尺子量一量图中的a,b,c,d点到对称轴的距离分别是多少厘米?(保留一位小数)

认真度量,结果填在书上,你发现什么?

投影订正。填后的结果:

a点到对称轴的距离是0。6厘米。

b点到对称轴的距离是1。2厘米。

c点到对称轴的距离是0。6厘米。

d点到对称轴的距离是1。2厘米。

问:根据测量的结果你发现什么?

(a,d两点及b,c两点都分别在对称轴两侧。a,d两点到对称轴的距离相等,都是0。6厘米;b,c两点到对称轴的距离也相等,都是1。2厘米。)

问:根据度量结果,你们能总结出对称图形的性质吗?

板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

(3)验证性质。

量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

(三)课堂总结

今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

(四)巩固练习

1、第127页1题,画出对称轴。

2、在你周围的物体上找出三个对称图形。

3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

4、你能否应用对称图特点,剪出美丽的窗花或五角星。

人教版五上数学教案精选6篇相关文章:

一年级数学人教版分与合教案5篇

五上数学位置教案7篇

人教版黄山奇石教案8篇

一年级数学人教版分与合教案优质5篇

人教小学美术教案参考5篇

五上数学位置教案通用7篇

人教版六上英语教案7篇

人教版六上英语教案优质8篇

五上数学第二单元位置教案5篇

四上数学教学计划人教版8篇

人教版五上数学教案精选6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
133909